Pioneering for You

iPWM

HVAC OEM Competence Centre

Yonos PARA ST **/7.0 iPWM2 Datasheet

Yonos PARA ST **/7.0 iPWM2

Field of application

Solar thermal

Yonos PARA ST 15/7.0 iPWM2 130 12		
Yonos PARA	High Efficiency pump for heating application	
ST	Inline cast iron pump housing dedicated for solar thermal application	
15	Threaded connection DN 15 (25, 30 : also available)	
7.0	7.2 = delivery head in [m] at $Q = 0 \text{ m}^3/\text{h}$	
iPWM2	The pump is controlled by an external system via iPWM signal, i=feedback	
130	Pump housing length 130 mm (180 mm: also available)	
12	Control box orientation 12 o'clock (3, 6, 9 o'clock: also available)	

Hydraulic operational area

Dimensions

Thread	Overall length (mm)	Dimensions (mm)
	10	L1
G1"	130	65
G1"½	130	65
G1"½	180	90
G2"	180	90

Electrical connections

Integrated Molex 3-way connector

Overmoulded connector

Overmoulded power cables

Standard signal cables

Signal	Overmoulded Pin	Cable color
PWM input (from controller)	1	brown
PWM common	2	Grey or blue
PWM output (from the pump)	3	black

Approved fluids (other fluids on request)	Heating water (in accordance with VDI 2035) Water-glycol mixtures (max. 1:1; above 20% admixture, the pumping data must be checked)	
Power		
Energy Efficiency Index (EEI-part 3)	≤ 0,20	
Max. delivery head	7.3 m	
Max. volume flow	3.3 m ³ /h	
Permitted field of application		
Temperature range for applications in HVAC systems at max. ambient temperature. Limit values for continuous operation at maximum rated power	Of $55^{\circ}C = 0$ to $110^{\circ}C$ Of $62^{\circ}C = 0$ to $90^{\circ}C$ Of $66^{\circ}C = 0$ to $80^{\circ}C$ Of $71^{\circ}C = 0$ to $70^{\circ}C$	
Maximum static pressure	PN 10	
Electrical connection		
Mains connection	1~230 V +10%/-15%, 50/60 Hz (IEC 60038 standard voltage)	
Motor/electronics	PLA CALL	
Low voltage directive	2006/95/EC Conform	
Electromagnetic compatibility	EN 61800-3	
Emitted interference	EN 61000-6-3 EN 61000-6-4	
Interference resistance	EN 61000-6-2 EN 61000-6-1	
Protection class	IPx4D	
Insulation class	F	
RoHS / REACH	Compliant but not submitted	

ŀ ŀ ŀ

Minimum suction head at 50/95°C	0.5 /4.5 / 11 m

Motor data

Yonos PARA	Speed	Power consumption 1-230 V	Current at 1-230 V	Motor protection
	n	P1	I	-
	rpm	W	A	-
ST **/7.0 iPWM2	800 / 4660	3-45	0.03-0.44	Integrated
Materials				

Yonos PARA	Pump housing	Impeller	Pump shaft	Bearing
ST **/7.0 iPWM2	PA6.6 composite with GF 30%	PP composite with GF 40%	Stainless steel	Carbon, metal impregnated

External control via an iPWM system

The actual/setpoint level assessment required for control is referred to a remote controller. The remote controller sends a PWM signal as an actuating variable to the Wilo-Yonos PARA. The PWM signal generator gives a periodic pulse order to the pump (the duty cycle) according to DIN IEC 60469-1. The actuating variable is determined by the ratio between pulse duration and pulse period. The duty cycle is defined as a ratio without dimension, with a value of 0 ... 1 or 0 ... 100 %. This is explained in the following with ideal pulses which form a rectangular wave.

t₁/T = 0.25 = 25%

iPWM interface

PWM-in

Signal frequency:	100 Hz-5000 Hz (1000 Hz nominal)
Signal amplitude:	Minimum 3.6V at 3 mA Up to 24V for 7.5 mA absorbed by the pump interface

PWM-out

V _s	3V≤V _s ≤24V
R ₂	(V _s -0,2)/I _{out} -R ₁
R ₂ C	$\leq \frac{1}{1000*\ln(0.3)*75}$
C=filter capacitor	for rise time impact < 0.1%

Signal frequency:	75Hz +/- 2Hz
R ₁	470Ω +/-5%
V _{ol} =V _{out low}	<1V for I _{out} <1mA

wilo

iPWM-in signal logic 2 (solar) (%)

% PWM-out	Status	Potential causes
0	Pump output iPWM interface damaged	iPWM interface in short circuit
2	Stand-by, pump is ready to run	/
5-75	Pump is running normally, flow information is supplied	/
80	Abnormal running mode Pump is running but not at optimal performance	- Undervoltage 160/170-194V - Self thermal protecting mode
85	Abnormal function mode Pump has stopped but is still functional	 - Undervoltage <160/170V - Overvoltage - Unexpected external flow
90	Abnormal function mode Pump has stopped but is still functional Check the installation setup and medium	 Failure on another component than pump Debris in the installation Bad temperature setup
95	The pump has stopped due to permanent failure	 Pump blocked Electronic module out of order
100	Problem of iPWM connection	iPWM interface in open circuit

iPWM-out accuracy

wilo

Solar circuit (water)	Accuracy on measurement with temperature correction matrix (valid for rotation speed > 2000 RPM)	Resolution on iPWM output (additional to accuracy)
for Q ≤ 600L/h	+/- 60 L/h*	10 L/h
for Q > 600L/h	+/- 10%*	10 L/h

*temperature correction factor available on demand for refining

iPWM-out reaction time

Failure	Reaction time 'tr' [sec]
Undervoltage	<2
Blocked rotor	<5
Flow adjustment	<5
(90% of targeted flow)	

If the controller adjusts iPWM-in with a higher frequency than the "reaction time", the flow adjustment sent by iPWMout may not be updated. However the rotation speed will change according to the demand.

WILO HVAC OEM Competence Centre

50 av. Casella 18700 - Aubigny sur Nère France T +33 2 48 81 62 62 information@wilo-oem.com www.wilointec.com

Pioneering for You